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EXECUTIVE SUMMARY

The main goal of this milestone was to help CEED-enabled ECP applications, including ExaSMR, MARBL,
ExaWind and ExaAM, to improve their performance and capabilities on GPU systems like Summit and
Lassen/Sierra. In addition, the CEED team also worked to: add and improve support for additional hardware
and programming models in the CEED software components; release the next version of the CEED software
stack, CEED-3.0; and demonstrate performance of libParanumal kernels in libCEED, Nek and MFEM. These
additional tasks contributed directly to the main CEED-MS34 goal and will also play an important role in
CEED'’s future milestones.

The specific tasks addressed in this milestone were:

e Add/improve support for additional hardware and programming models in the CEED software compo-
nents;

e Demonstrate performance of libParanumal kernels in libCEED, Nek and MFEM;
e Public release of CEED-3.0, including new releases of many CEED software components;
e Work with CEED applications to improve their GPU performance and capabilities.

All new developments were released under a CEED-3.0 release, and integrated with applications to improve
their GPU performance and capabilities.

The artifacts delivered include a number of software releases: CEED-3.0, libCEED-0.6, MFEM-4.1,
NekRS-20.0, hipMAGMA-1.0, Laghos-3.0, Remhos-1.0 and GSLIB-1.0.6; performance improvements in
applications, tuned CEED software for various architectures through a number of backends, freely available
in the CEED’s repository on GitHub. See the CEED website, http://ceed.exascaleproject.org and the
CEED GitHub organization, http://github.com/ceed for more details.
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1. INTRODUCTION

The goal of this milestone was the performance tuning of the CEED software, as well as the use and tuning
of CEED to accelerate the first and second wave of targeted ECP applications. This included the ExaSMR
application — Coupled Monte Carlo Neutronics and Fluid Flow Simulation of Small Modular Reactors (ORNL),
the MARBL application — Next-Gen Multi-physics Simulation Code (LLNL), ExaConstit — a miniapp for the
ExaAM project, as well as ExaWind and E3SM.

The CEED team developed optimization techniques and tuned for performance the CEED software to
accelerate the target ECP applications. Specifically, the focus was on the following:

e Efficient use of the memory sub-system for managing data motion and interactions among different
physics packages and libraries. This included integration of the new developments in a libCEED 0.6
software release.

e FEnhancing the CEED libraries with GPU and AMD GPU support in close interaction with vendors;

e Optimal data locality and motion, and enhanced scalability and parallelism. This included vendors
interactions for improvements in data motion and making strong scaling easier and more efficient;

e Continue boosting performance for the first-wave and second-wave of ECP target applications, including
ExaSMR, ExaWind, MARBL, E3SM, and ExaAM.

In addition, the CEED team also worked to: add and improve support for additional hardware and
programming models in the CEED software components; release the next version of the CEED software
stack, CEED-3.0; and demonstrate performance of libParanumal kernels in libCEED, Nek and MFEM. These
additional tasks are documented in the separate sections in this report. They contributed directly to the
main CEED-MS34 goal and will also play an important role in CEED’s future milestones.

The artifacts delivered include a number of software releases: CEED-3.0, libCEED-0.6, MFEM-4.1,
NekRS-20.0, hipMAGMA-1.0, Laghos-3.0, Remhos-1.0 and GSLIB-1.0.6; performance improvements in
applications, tuned CEED software for various architectures through a number of backends, freely available
in the CEED’s repository on GitHub. See the CEED website, http://ceed.exascaleproject.org and the
CEED GitHub organization, http://github.com/ceed for more details.

2. LIBPARANUMAL KERNELS IN LIBCEED, NEK, AND MFEM

The CEED 1ibParanumal library is an experimental testbed for exploring plugin GPU-capable components
that can be integrated into existing high-order finite element codes as optional accelerator modules. This
library is being actively developed by the CEED team at Virginia Tech. In this section we describe the efforts
to take the highly optimized kernels from 1libParanumal and make them more widely available to CEED
applications, by incorporating those kernels in the CEED low-level API library (1ibCEED) and the CEED
high-level APT codes (MFEM and Nek5000)

The CEED VT team developed a set of highly optimized implementations for the CEED bake-off kernels
BK1-6 and the associated bake-off problems BP1-6. These bake-off benchmarks encompass several core
finite element operations including evaluating the action of a stiffness matrix on a vector of unknowns.
Implementations of these kernels are featured in the recently released benchParanumal benchmark codes that
were spun off from the 1ibParanumal library to facilitate rapid prototyping of kernels. benchParanumal includes
reference implementations in the CUDA, HIP, and OCCA programming models. Our first goal was to analyze,
scrutinize, adapt and incorporate critical features from the highly optimized benchParanumal kernels into
the 1ibCEED library of portable finite element operator implementations and the LLNL MFEM modular finite
element project.

This activity was facilitated in part by Yohann Dudouit visiting Virginia Tech for a week following the 3rd
CEED Annual Meeting. A comprehensive comparison of the existing 1ibCEED and benchParanumal compute
kernels was used to determine a plan for how to modify the output of the CUDA-gen backend of 1ibCEED to
obtain similar performance to benchParanumal.

Exascale Computing Project (ECP) 1 CEED-MS34



The VT team has also developed a showcase library called 1ibParanumal that is built on top of OCCA kernels
from benchParanumal. The libParanumal library includes example miniapps include high-order finite element
solvers for elliptic problems, compressible Navier-Stokes, incompressible Navier-Stokes, and Boltzmannian gas
dynamics. Our second goal was to incorporate the libParanumal elliptic solvers and other capabilities into
the NekRS portable high order spectral element solvers for incompressible flow simulations being developed
by the CEED UIUC and ANL teams. Finally we developed a process an improved process to incorporate
ongoing and future developments from benchParanumal and libParanumal into the CEED Nek5000, MFEM, and
1ibCEED packages.

2.1 Integrating libParanumal kernels in MFEM

Based on the algorithms from benchParanumal, the MFEM team has developed a pathway to integrate
libParanumal kernels directly in MFEM. This is in addition to the CUDA kernels in 1ibCEED that were optimized
in collaboration with 1ibParanumal and are also available in MFEM via the 1ibCEED integration, see Section 2.2.

The pathway to libParanumal kernels integration is based either on the OCCA versions of the bench-
Paranumal kernels (MFEM already supports OCCA) or on the device versions of the kernels based on new
features, such as mapping data to registers, that have been added in a development branch of MFEM. Another
important feature is loop unrolling in MFEM_FORALL kernels, which will require additional developments in MFEM
in order to achieve the same level of performance. Exclusive memory was added to the MFEM ’s kernels by
providing an extra token, MFEM REGISTER, to allow the addition of such qualifier to local variables. The concept
of exclusive memory is similar to thread-local storage: one variable gets its own private value per thread.
This new keyword makes it possible to use 1libParanumal’s kernels by embedding them into lambda-captured
MFEM_FORALL kernels. In Listing 1 we show how OCCA kernel code from libParanumal can now be easily
translated into the lambda capture approach used by MFEM.

109 Config: MFEM/cuda, host: lassen (1 node, 1 task/node), goc, bp3-jit 104 Config: MFEM/cuda, host: lassen (1 node, 1 task/node), goc, bp3-jit

pUte NOdes x sex
S\
o
o

18]/ [compute nodes x sec

% CO Reration

000 ace

Figure 1: Left: original MFEM diffusion kernel. Right: 1ibParanumal style kernels
in MFEM.
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Qrestrict
Q@restrict
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Q@restrict
Q@restrict

const
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const
const
const

dlong
dlong
dfloat
dfloat
dfloat

const dfloat lambda,
Q@restrict const dfloat
@restrict dfloat *Aq){

for(dlong e=0; e<Nelements;

@shared dfloat
p_cubNqgl;
@shared dfloat

@shared dfloat
@shared dfloat

*elementList ,
*localizedIds,

*ggeo,

*D,

*I,

*q,

++e; Qouter (0)){

s_Iqlp_cubNql[p_cubNqgll

s_D[p_cubNgl [p_cubNql;
@shared dfloat s_I[p_cubNql[p_Nql;
s_Gqr [p_cubNql [p_cubNql;
s_Ggs [p_cubNg] [p_cubNql;

Q@exclusive dfloat r_qt;
Q@exclusive dfloat r_qlp_cubNql, r_Aql

p_cubNqgl;

@exclusive dlong element;

for (int j=0;j<p_cubNq;++j;@inner (1)) {
for (int i=0;i<p_cubNq;++i;@inner (0)) {

= D[p_cubNg*j+il;

if (i<p_Nq) { s_I[jI1[il

s_D[j1[il]

= I[p_Ng*j+il;

template<int T_D1D = 0, int T_Q
void BP3Global_vO(const int NE,

const int
const int
constexpr
H
constexpr

B

auto b =
auto g =
auto d =
NE) ;

auto x =
NE) ;

auto y =
DiD, NE)

D1D
Q1D
int

int

const Array<d
const Array<d
const Vector
const Vector
Vector &Y,
const int did
const int qid

1D = 0>
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&D,
&X,

>
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= T_D1D 7 T_D1D : did;
= T_Q1D ? T_Q1D : qild;
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Reshape (B.Read (), Q
Reshape (G.Read (), Q
Reshape(D.Read (), Q

Reshape (X.Read (), D

Reshape (Y.ReadWrite

B}

MFEM_FORALL_2D (e, NE, QiD, Q

{

MFEM_SHARED
MFEM_SHARED
MFEM_SHARED
MFEM_SHARED
MFEM_SHARED

T_D1D : MAX_D1D
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double s_Iq[MQ1]1[MQ1][MQ1];

double s_DI[MQ
double s_I[MQ
double s_Gqr[
double s_Ggs[

double MFEM_REGISTER_2D(r
double MFEM_REGISTER_2D (r_q,MQ1,MQ1) [MQ1

13

11[MQ17;
1] [MD1];
MQ1]1[MQ1];
MQ11[MQ11;

-qt,MQ1,MQ1);

double MFEM_REGISTER_2D(r_Aq,MQ1,MQ1) [

MQ1];

MFEM_FOREACH_THREAD (j,y,Q1D) {
MFEM_FOREACH_THREAD (i,x,Q1D) {
s_D[jI1[i] = g(i,j);
if (i<D1D) { s_I[j1[i]l = b(j,i); }
if (i<D1D && j<D1D) {
for (int k = 0;

MFEM_REGISTER
= x(i,j,k,e);

k < D1D; k++) {
_2D(r_q,j,1) [k]

Figure 2: Example translation of libParanumal OCCA kernel code (left) into
MFEM lambda code (right) using MFEM_FORALL with the MFEM_REGISTER qualifier.
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The MFEM speed up results after the diffusion kernel was transformed in this way are shown in Figure 1.
We see that performance was improved for the diffusion kernel with polynomial degrees of 4 and higher and
that the new libParanumal variant kernels are able to be used up to degree 14 hexahedral elements whereas
the MFEM variants were only able to work up to degree 7. The speed ups and increased degree capability
are due to the careful tuning of the libParanumal kernel implementation, unrolling, cache management,
and the two-dimensional slicing algorithm imported from libParanumal [23]. This algorithm and tuned
implementations were the result of many generations of kernel optimization and refinement and is able to
compute the action of the finite element diffusion operator at the streaming rate of the state vector, output
vector, and geometric information of the element.

The new MFEM infrastructure developed to import the 1ibParanumal algorithms also enables the generaliza-
tion from the canonical CEED bake-off problems handled by libParanumal to the more general capabilities
of MFEM while also preserving highly tuned performance. MFEM now has unique performance capabilities for
general high-order finite element calculations on GPUs.

2.2 Integrating libParanumal kernels in libCEED

Unlike MFEM and Nek5000, initially 1ibCEED did not have a library of available operators. Operators could
only be described at runtime by the user, preventing operator specific optimizations. However, the recent
development of the QFunction gallery in 1ibCEED allows to target specific known operators, e.g. BP1, BP3,
enabling the direct integration in 1ibCEED of highly optimized kernels targeting specific operators. This new
feature offers a clear path for the integration of 1ibParanumal kernels in 1ibCEED, and an effort in this direction
is in 1ibCEED’s roadmap. Nevertheless, the experience gathered by the CEED team developing 1ibParanumal at
VT was used to substantially improve the performance of 1ibCEED. See Figure 3 for a comparison before/after
on BP3 using 1ibCEED through MFEM.

Config: MFEM/ceed-cuda, host: lassen (1 node, 1 task/node), gce, BP3 Config: MFEM/ceed-cuda, host: lassen (1 node, 1 task/node), gce, BP3
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Figure 3: Left: original 1ibCEED diffusion kernel. Right: 1ibCEED diffusion
kernel after using libParanumal optimizations.

During a workshop at VT, analyzing the differences between libParanumal kernels for BP1 and BP3, and
the code generated by the cuda-gen backend of 1ibCEED revealed the causes of the main performance gaps.
Transferring the identified 1ibParanumal’s critical code optimizations to the cuda-gen backend almost closed
the performance gap between libParanumal and 1ibCEED for BP1 and BP3. In addition, these optimizations
also resulted in an overall performance improvement for all operators generated by the cuda-gen backend
of 1ibCEED. However, libParanumal still has an edge over 1ibCEED on other BP problems, therefore future
workshops are planned to further improve 1ibCEED’s code generation using the work done in libParanumal.
It should be emphasized that one of the most positive aspect of this workflow is that the highly optimized
kernels developed in 1ibParanumal, targeting specific operators, result in an overall performance improvement
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for 1ibCEED over the whole spectrum of possible operators defined arbitrarily by the user.

2.3 Integrating libParanumal into NekRS

NekRS is a new C++ variant of Nek5000 based on the OCCA project and the libParanumal library developed
by Warburton’s group at Virginia Tech as part of the CEED project since 2017 as a test platform for exploring
advanced algorithms for PDEs. NekRS development started in January, 2019 with the goal of reproducing
the operational capabilities of Nek5000 including additional support for portable heterogeneous computing
focusing on GPU acceleration.

Figure 4: NekRS 17x17 rod-bundle turbulent flow simulation performed on the
OLCF Summit system.

Figure 4 demonstrates turbulent flow in 17x17 rod-bundle computed with NekRS on Summit. Figures 5
shows our baseline performance results for the very initial version of NekRS, released on GitHub in November
2019, performed on Summit for the 17x17 rod-bundle flow simulation illustrated in Figure 4. The mesh
uses 277000 elements of order N = 7 (n = 95M gridpoints total). The Reynolds number is 5000 based
on hydraulic diameter. Periodic boundary conditions are used in the axial flow direction and the initial
conditions comprise an array of meandering vortices.

Figure 5, left, shows strong scaling results on a few nodes of Summit using NekRS with six V100 GPUs
per node or NekRS/Nek5000 with 42 CPU cores per node. For the CPU version, NekRS uses Hypre as a coarse
grid solver. In this case, NekRS running on the CPUs is about 4X slower than Nek5000 because the pressure
solver is not yet as optimized as the highly-tuned solver in Nek5000. For the GPU, the NekRS results improve
substantially when the coarse grid solver is based on the AMG solver ParAlmond developed by Warburton’s
research group.

Figure 5, center, shows the pressure iteration counts for each of the four cases. Nek5000 uses Schwarz-
smoothed p-multigrid while NekRS uses Chebyshev smoothing. When ParAlmond is used for the coarse-grid
solve the NekRS iteration counts improve by a factor of two and are on par with those of Nek5000. However,
the Chebyshev smoother requires more work per iteration than the Schwarz-based smoother.

With ongoing effort on the pressure solve we anticipate a 2X reduction in NekRS solution times, which will
put it on par with the strong-scaled solution times of Nek5000 with more than 2X energy savings that are
already observed for NekRS on Summit’s V100s. See Figure 5, right.
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Figure 5: NekRS and Nek5000 performance of GPUs vs. CPUs on Summit for
turbulent flow simulations with Re=5000 for a 17x17 rod-bundle geometry using
total number of grid points n=95,011,000. Based on timings from Step 11 to 60,
time-per-step with ideal scalings shown as dashed lines (left), pressure iterations
per step (center), and dofs-per-joule with respect to time-per-step (right) are
shown.

2.4 Ongoing integration of benchParanumal and libParanumal kernels into CEED packages

Ongoing and future developments from benchParanumal and libParanumal will continued to be integrated into
the CEED Nek5000, MFEM, and 1ibCEED packages as follows:

e The fastest changing part of libParanumal, namely the CEED bake-off kernels and CEED bake-off
problem codes was split off into a separate project benchParanumal. This enabled the CEED ANL and
UIUC terms to build NekRS on top of libParanumal as the latter now changes less frequently.

e Work is already under way to tune benchParanumal kernels for AMD GPUs using the OCCA HIP
backend. Kernels from benchParanumal will be migrated into 1ibParanumal and consequently up to NekRS
as they are tested and proved capable for the AMD GPUs on Frontier and the Intel GPUs on Aurora.

e The MFEM CUDA-gen backend was extended to capture more capabilities exploited by the kernels in
benchParanumal. Incorporating future kernels from benchParanumal into MFEM will thus be more straight
forward going forward.

3. CEED-3.0 RELEASE

The CEED distribution is a collection of software packages that can be integrated together to enable efficient
discretizations in a variety of high-order applications on unstructured grids. CEED is using the Spack package
manager for compatible building and installation of these software components.

Version CEED-3.0 released on March 31st, 2020 contains 12 integrated packages, ranging from low-level
modular libraries to applications, plus the CEED meta-package. We list these packages below, listing some
highlights for each of them since the last release.

GSLIB-1.0.6 — Improved testing and portability; enhanced support for “sessions”.

Laghos-3.0 — Unified device support through MFEM-4.1, including CUDA, RAJA, OCCA, HIP, OpenMP,
and more. See Section 5.2.2 for more information about this Laghos release.

libCEED-0.6 — New documentation website, numerous new features, backend performance improvements,
and examples/miniapps. This release is discussed in detail in Section 4.

MAGMA-2.5.3 — hipMAGMA for AMD GPUs, new symmetric interfaces, and half-precision support.
See Section 6.1.3 for more information on the hipMAGMA-1.0 release.
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MFEM-4.1 — Improved GPU support, libCEED support, extensions to partial assembly techniques, new
solvers, new discretization capabilities, improved test coverage, and new examples/miniapps. Some
discussion of backend improvements in MFEM-4.1 can be found in Section 6.1.1.

Nek5000-19.0 — Experimental RANS models, new partitioners, mesh quality smoothing, algebraic multigrid
improvements, and improved support for Nek-Nek simulations.

Nekbone-17.0 — Stable release.
NekCEM-c8db04b +— Portability and ongoing maintenance.
OCCA-1.0.9 — HIP backend, portability and inlining improvements.

PETSc-3.13 +— Enhanced GPU support, scalability and capability improvements for distributed unstruc-
tured meshes and finite element spaces, and much more; see the release notes for details.

PUMI-2.2.2 +— Improved testing, examples, and documentation; portability and mesh format completeness.

Remhos-1.0 (REMap High-Order Solver) — New miniapp that solves the pure advection equations used to
perform monotonic and conservative discontinuous field interpolation (remap) as part of the Eulerian
phase in Arbitrary Lagrangian Eulerian (ALE) simulations. See Section 5.2.1 for more information.

The CEED suite is primarily distributed using the Spack package manager, and can be installed on any
system using spack install ceed. For convenience, we provide configurations for common systems including
Mac OSX, Linux (RHEL7 and Ubuntu), LLNL Lassen, and ORNL Summit. We also provide base and
complete pre-built images for use with Docker, Singularity, and Shifter, enabling users to deploy CEED
technologies in seconds, and to incorporate into continuous integration and cloud environments. See the
distribution website for further details.

In developing these packages and preparing this integrated release, we strive to follow best practices in
open source development (especially as curated by the xSDK project). This involves community aspects like
prompt response to issues and review of pull request, advising of new contributors, and clear, up-to-date
documentation, as well as technical aspects like portable builds, complete and precise test suites, continuous
integration for correctness and code quality metrics, interfaces with a clearly defined software lifecycle, and
modular design with opportunities for new contributors.

4. LIBCEED-0.6 RELEASE

libCEED is CEED’s low-level API library that provides portable and performant evaluation of high-order
operators. Version 0.6 of libCEED was released as part of the the CEED-3.0 release and the CEED-MS34
milestone with a number of new features and performance improvements.

Some of the new features that make it easier to take advantage of the highly optimized libCEED kernels in a
wide variety of applications are:

e New expanded documentation at libceed.readthedocs.io.

e New Python interface using CFFI provides a nearly 1-1 correspondence with the C interface, plus some
convenience features. For instance, data stored in the CeedVector structure are available without copy
as numpy.ndarray. Short tutorials are provided in Binder.

e The inverse of separable operators can be obtained using CeedOperatorCreateFDMElementInverse and
applied with CeedOperatorApply. This is a useful preconditioning ingredient, especially for Laplacians
and related operators.

e User-provided linear QFunctions can be assembled as block-diagonal matrices (per quadrature point,
CeedOperatorAssembleLinearQFunction) or to evaluate the diagonal (CeedOperatorAssembleLinearDiagonal).
These operations are useful for preconditioning ingredients and are used in the libCEED’s multigrid
examples.
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The new libCEED-0.6 release includes a number of improvements in its GPU and CPU backends. These are
discussed in detail in Section 2.2 and Section 6.1.3, here is a short summary:

e MAGMA backend was significantly optimized for non-tensor bases.

e User-provided QFunctions using variable-length array pointer constructs can now be used with CUDA
backends.

e No-copy optimization in CeedOperatorApply.

e Some missing edge cases in the CUDA backend were fixed.

New backend: /cpu/self/memcheck/serial.

An important component of libCEED-0.6 are the greatly expanded set of examples with detailed documentation
that can be easily used as a starting point by new users. Some of the notable new examples are discussed
briefly in the rest of this section.

4.1 PETSc BPs on the cubed-sphere

This example solves a Laplace problem on the sphere (with a “cubed” mesh) that is relevant to atmospheric
modelling and E3SM. The example uses the following coordinate transformations for the computation of

the geometric factors: from the physical coordinates on the sphere, denoted by X = (%, gj, g’), and physical
coordinates on the discrete surface, denoted by x = (x,y, 2), to X = (X,Y) € I = [-1,1]? on the reference
element, via the chain rule
ox Cox ox W
0X (3x2) 0% (3x3) 0X (3x2)’

with Jacobian determinant given by

7| =

0% 0%
coly (8?) X coly (82) ‘ (2)

We note that in equation (1), the right-most Jacobian matrix dx/0X(3x2) is provided by the library, while

5;(/ 0% (3x3) is provided by the user with analytical derivatives. In particular, for a sphere of radius 1, we have

and thus

ox 1
—= = —I(3x3) — 75 (XX )(3x3)-
Ox [l T
For the L? projection problems, BP1-BP2, that use the mass operator, the coordinate transformations
and the corresponding Jacobian determinant, equation are given by (1) and (2). For the Poisson’s problem,

BP3-BP6, on the cubed-sphere, in addition to equation (2), the pseudo-inverse of 5‘)0(/ 0X is used to derive
the contravariant metric tensor. We begin by expressing the Moore-Penrose (left) pseudo-inverse:

o+ o T o oo
o0X _ ox [ ox ox ox 3)
- | 90X (2x3) 0X (3x2) O0X (2x3)
(2x3)

ox (2x3)
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This enables computation of gradients of an arbitrary function u()o() in the embedding space as

o _ou o ox
Ox(1x3) OX(1x2) 9x (2x3)

and thus the weak Laplacian may be expressed as

/ o <8u>T_ o 0X <8X>T <8u>T @
Q Ox \9x 09X ox \ ox X
N——————
8(2x2)

where we have identified the 2 x 2 contravariant metric tensor g (sometimes written g). This expression
can be simplified to avoid the explicit Moore-Penrose pseudo-inverse,

oT o\ * o T o oT o\ T oT o\ *
_ [ ox ox ox X ox Ox _ [ ox ox (5)
87| ox ax 9X (2x3) X (3x2) | 90X 09X ~|lax ax

(2x2) (2x2) (2x2)

where we have dropped the transpose due to symmetry. This allows us to simplify (4) as

-1

OT (o]
[ 2 (2 T_/av ox ox ) (ou\"
0oz \ss) T Joax | ox ax X )
—_———
8(2x2)

which is the form implemented in gfunctions/bps/bp3sphere.h.

4.2 Solid mechanics elasticity miniapp

In this miniapp, we consider three formulations used in solid mechanics applications: linear elasticity, Neo-
Hookean hyperelasticity at small strain, and Neo-Hookean hyperelasticity at finite strain. We provide the
strong and weak forms of static balance of linear momentum in the small strain and finite strain regimes.
The stress-strain relationship (constitutive law) for each of the material models is provided. Due to the
nonlinearity of material models in Neo-Hookean hyperelasticity, the Newton linearization of the material
models is provided.

Note: Linear elasticity and small-strain hyperelasticity can both by obtained from the finite-strain
hyperelastic formulation by linearization of geometric and constitutive nonlinearities. The effect of these
linearizations is sketched in the diagram below, where o and € are stress and strain, respectively, in the
small strain regime, while S and E are their finite-strain generalizations (second Piola-Kirchoff tensor and
Green-Lagrange strain tensor, respectively) defined in the reference configuration, and C is a linearized
constitutive model.

constitutive
—

Finite Strain Hyperelastic St. Venant-Kirchoff

geometric | B — € geometric | B — € (6)
Small Strain Hyperelastic Consm—témvc Linear Elastic
o=_Le

The elasticity min-app is controlled via command-line options, which allow the user to use variety of
meshes and boundary conditions, see Figure 6. The miniapp is configured to use the following Newton-Krylov-
Multigrid method by default:

e Newton-type methods for the nonlinear solve, with the hyperelasticity models globalized using load
increments.
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Figure 6: Example of mesh for sample run of libCEED’s new elasticity miniapp.

e Preconditioned conjugate gradients to solve the symmetric positive definite linear systems arising at
each Newton step.

e Preconditioning via p-version multigrid coarsening to linear elements, with algebraic multigrid (PETSc’s
GAMG) for the coarse solve. The default smoother uses degree 3 Chebyshev with Jacobi preconditioning.
(Lower degree is often faster, albeit less robust; try -outer mg levels ksp max it 2, for example.) Appli-
cation of the linear operators for all levels with degree p > 1 is performed matrix-free using analytic
Newton linearization, while the lowest order p = 1 operators are assembled explicitly.

Many related solvers can be implemented by composing PETSc command-line options. For additional details,
including full documentation of the command line options, example runs and the detailed derivation of the
weak formulation, see the online documentation at libceed.readthedocs.io/en/latest /examples/solids.

5. APPLICATIONS GPU PERFORMANCE AND CAPABILITIES IMPROVE-
MENTS

CEED aims to impact a wide range of ECP applications through close collaborations, by developing easy-to-
use discretization libraries and high-order finite-element algorithms for critical needs in the applications. Our
primary goal in this milestone was to help the CEED-engaged applications (ExaSMR, MARBL, ExaWind,
ExaAM) with their GPU porting, performance improvements and the development of new capabilities that
require high-order research and development (meshing, solvers, physics models, etc.). As part of this effort,
we are also reaching out to additional applications in the ECP and also in non-ECP projects.

5.1 ExaSMR

The ExaSMR-~oriented effort has focused on improved meshing and extreme scalability for reactor thermal
hydraulics problems with Nek5000/NekRS.

The CEED/NEK team has developed an all-hex meshing utility for efficient simulation of flow through
random arrays of dense-packed spheres. This capability is central to analysis of newly designed pebble bed
reactors of interest to the ExaSMR application. The utility generates all-hex meshes by starting with Voronoi
cells surrounding each pebble, optimizing these and tessellating each cell facet into quadrilaterals that are
projected onto the pebble surfaces. The new approach yields high quality all-hex meshes with element counts
that are a factor of six lower than previous approaches based on tet-to-hex conversion, allows the use of more
accurate, higher-order, elements for the same resolution (number of grid points). The improved mesh quality
also results in lower iteration counts and less severe stability constraints such that the overall runtime is
reduced by an order of magnitude. Development work was started on 146 pebbles and recently extended to a
1568-pebble simulation with 500,000 elements.

We also have pushed the overall work flow for Nek5000/NekRS to support over 60 million 7th-order
elements, the largest number of spectral elements in production runs to date. We present strong- and weak-
scaling studies for 17 x 17 rod-bundle simulations. Improved performance on GPUs and CPUs using the
latest repo versions of NekRS and Nek5000 during are also demonstrated in this section.
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Figure 7: Velocity distribution for flow past 1568 pebbles at Re = 10,000
simulated with NekRS using 66 V100 GPUs on Summit. The all-hex mesh
comprises E = 524, 386 elements of order N =7 (n = 179, 864, 398).

5.1.1 GPU Strong-Scaling Performance on Pebble Beds Reactor Simulations

Figure 7 demonstrates the NekRS capability to simulate complex flows. Shown is the velocity distribution for
flow at Reynolds number Re = 10,000 in a 1568-pebble bed that has been run on 66 GPUs on Summit. The
total number of gridpoints is n = 179,864, 398 with E = 524, 386 elements of order N = 7. Figure 8, left,
shows the corresponding number of GMRES iterations per timestep in pressure solve for different node counts,
while Figure 8, right shows the accumulated wall-clock time. Using 6 GPU per node, the performance is
measured on 11, 22, and 44 nodes on Summit (i.e., 66, 132, and 264 GPUs, respectively) with corresponding
number of grid points per GPU of (n/gpu) 2.7M, 1.3M, and 680K. Table 1 shows strong-scaling performance
with the accumulated walltime at 5000 timestep demonstrating improved parallel efficiency on GPU using
relatively lower count of grid points per GPU, compared to our previous baseline studies shown in Section
2.3. We achieve 75% parallel efficiency using 1.3M points per GPU and 52% using 680K points per GPU.

Figure 9 demonstrates a performance comparison between the tet-to-hex and new all-hex mesh for the
146-pebble case at approximately the same resolution. The tet-to-hex mesh has n = 23M (E = 365844,
N = 4) while the new all-hex mesh uses n = 21M with (E = 63132, N = 7). Figure 9(left) shows the number
of (Nek5000) GMRES iterations in pressure solve for varying timestep sizes for each of the two meshes.
The tet-to-hex mesh requires 50 iterations per timestep with A¢ = .001 (convective time units), whereas
the all-hex mesh requires ~10-20 iterations while using a three-times larger timestep. The benefits of the
improved mesh are borne out in the long-time integration results of Figure 9(right). For the same wall-clock
time, the new meshing approach realizes roughly an order-of-magnitude increase in simulated time. The next
section provides more detail on the new all-hex meshing approach.

5.1.2 Nowel All-Hex Meshing Strategies for Dense-Packed Spheres

Flow through beds of randomly-packed spheres is encountered in many science and engineering applications.
flows, Rep, > 1, where D), is the hydraulic diameter of the void space, high-order methods, which have
minimal numerical dissipation and dispersion, are highly effective for tracking turbulent structures in the
flow. The spectral element method (SEM)[8], which uses local tensor-product bases on curvilinear brick
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Figure 8: NekRS GPU performance on 11, 22, and 44 nodes using total 66, 132,
and 264 GPUs of Summit, respectively, for the 1568-pebbles mesh in Figure 7.
GMRES iterations per timestep in pressure solve (left) and accumulated walltime
measured per timestep (right) are shown.

nodes | GPUs | E/GPU n/GPU 1000 steps 5000 steps ratio | efficiency
11 66 7945 | 2,725,135 | 7.70385e+02 (sec) | 5.22546e+3 (sec) | - 1.0
22 132 3972 1,362,396 | 5.05101e4+02 (sec) | 3.45225e+3 (sec) 1.5 0.75
44 264 1986 681,198 3.62689¢+02 (sec) | 2.49199e+3 (sec) 2.1 0.52

Table 1: NekRS Strong-scaling performance on Summit GPUs, measured at
1000 and 5000 timesteps for 1568 pebbles in Figure 7 with E = 365844.

elements, is particularly efficient with memory costs scaling as O(n), independent of local approximation
order N. Here, n ~ EN3 is the total number of gridpoints in the mesh comprising E elements. In contrast,
standard p-type finite element methods, which support tetrahedral elements, exhibit O(EN®) storage costs.
Alternative tet-supporting high-order formulations (Dubrinov) have a 6-fold increase in cost over the standard
SEM formulation.

For a given resolution, n, the use of high-order elements with N = 7-15 implies a 300- to 3000-fold
reduction in the number of elements required when compared to linear elements. The meshing task is thus
somewhat more challenging as the objective is to have a high quality mesh with relatively few elements. In
contrast, with linear tets or hexes, one has the opportunity to effectively fill the computational domain with
grains of sand and repair connections where needed. Paving is one all-hex example that exhibits this point.
For the dense-packed sphere problem, the distance between the boundaries and the center of the voids is not
large—paved surfaces will quickly collide and a large number of (smaller) elements will be required to resolve
many of the configurations.

An alternative all-hex strategy is to first discretize the void space with tets and to then convert each tet
to four hexes. Given the efficiency of the SEM, this idea is not as terrible as it may seem. For one thing,
all-tet meshes tend to yield fairly isotropic elements that yield favorable iteration counts (c.f., [11]). This
strategy has been pursued in a recent article by Yuan et al. [27]. Unfortunately, the tet-to-hex strategy leads
to relatively high element counts for the dense-packed sphere problem. Yuan and coworkers found that they
could only use N = 3 for the target Reynolds numbers in their spherical beds, which is suboptimal for the
SEM where N > 5 is preferred [9]. For example, the tet-to-hex strategy of Yuan et al. yielded a mesh with
FE =375000 elements for 146 spheres in a cylindrical container.

The CEED Nek team developed novel meshing strategies for generating high-quality hexahedral element
mesh that ensure accurate representation of densely packed spheres for very complex pebble-bed reactor
geometries. Our target is to capture highly turbulent flow structures in solution at minimal cost, by using
minimum resolution and better accuracy with high-order approximation. The algorithmic strategies discussed
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Figure 9: GMRES iterations (left) and time-to-solution (right) comparison
between all-hex and tet-to-hex meshes. Meshes represent 146 pebbles for a
pebble-beds reactor geometry.

in details include efficient edge collapse, tessellation, smoothing, and projection. We demonstrate various
pebble bed geometries ranging from hundreds to thousands of pebbles with quality measurements, provided
with flows simulations, validation and performance. The underlying discretizations are based on spectral
element method[8] and simulations are performed using Nek5000 [10]. The algorithmic strategy builds
stone-steps toward simulating millions of pebbles for the full-core reactor at exascale.

While the interstitial space in randomly packed spheres is quite complex, there are several feature of this
problem that make it possible to recast the meshing question into a sequence of simpler, local, problems,
making the overall problem far more tractable. First, the presence of so many surfaces provides a large
number of termination points for a given mesh topology. As anyone who has expended significant effort on
meshing knows, such surfaces are a welcome relief from the nightmare of having to merge multiple incoming
mesh topologies. Second, by decomposing the domain into Voronoi cells defined by the sphere centers, we
can localize the meshing problem in several ways.

First, we reduce the problem to that of building a mesh that fills the gap between the facets of the Voronoi
cell and the sphere surface. This process entails tesselating each Voronoi facet into an all-quad decomposition
and projecting these quads onto the sphere surface. The convexity of the Voronoi cell and co-planarity of the
facets ensures that this decomposition is possible. Where desired, refinement in the radial direction is always
possible without disturbing other cells.

Second, each tesselation of each facet is a local problem. Because of bilateral symmetry about the Voronoi
facet, tesselation of a facet that is valid for one sphere will be valid also for the sphere on the opposite
side of the facet. We note that facets may have an odd number of vertices. If, for example, the facet is a
triangle, then the all-quad tesselation will require using midside subdivision, resulting in the introduction of
midside nodes along each edge. To retain the locality of the meshing strategy, we therefore introduce midside
nodes on each edge of each facet. With an even number of vertices thus guaranteed, we can generate an
all-quad tesselation of the resulting polygon. The strategy outlined above forms the essence of the proposed
algorithm. In principle, it will produce a base mesh with relatively few elements that inherit reasonable shape
qualities from the Voronoi base. There are several important modifications to put the method into practice.
We mention these briefly as: short-edge collapse (to remove small facets); corner replacement (to improve
void-center resolution and overall mesh quality); touching-sphere tesselation (to avoid contact singularity);
mesh refinement; mesh smoothing/optimization (to improve final mesh quality); surface projection (to ensure
that the final SEM nodal points are on the sphere surfaces while avoiding mesh entanglement). Save for the
last step, which is implemented as a user-defined functionality in the spectral element code Nek5000, all of
the other parts of the algorithm are implemented in Matlab in O(Ns) or O(N4logN;) time, where Ny is the
number of spheres.
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Figure 10: NekRS/Nek5000 CPU/GPU strong-scaling performance on Summit.
Accumulated walltime (left) measured using 101-200 timesteps and the GMRES
iterations per timestep in pressure solve are shown. 17 x 17 rod-bundle turbulent
flow simulations (Re = 5000, E = 277000, N = 7 (total 95 millions grids).

5.1.83 NekRS GPU/CPU Strong-Scaling Performance on 17 x 17 Rod-bundle Simulations

Figure 10 demonstrates recent strong-scaling performance on Summit’s CPUs and GPUs for 17 x 17 rod-bundle
turbulent flow simulations for Re = 5000 using a mesh F = 277000 and N = 7 (total 95 millions grid points).
Figure 10, left, shows the walltime measured per timestep using 100-200 timesteps demonstrating improved
strong-scale behaviors than previous baseline studies in Figure 4. Timings on NekRS GPU runs show 10x
speedup, compared to those on NekRS CPU and Nek5000 CPU runs. Figure 10, right, demonstrates the
GMRES iteration behaviors per timestep in pressure solve.

Tables 2-3 demonstrate larger sizes of weak-scaling performance tests. Table 2 describes the configuration
of testing set for 17 x 17 rod-bundle reactor geometry with the number of spectral elements increased by
the number of levels in z by increasing the domain size in [0, zmax]. We keep the number of element as
approximately 12000 per GPU (total ~4.1M points) and approximately 1715 per CPU (total n =~588K
points). Table 3 demonstrates weal-scaling performance on Summit, using 6 GPUs and 42 CPUs per node.
Accumulated walltime is measured using 101-200 timesteps for 17 x 17 rod-bundle turbulent flow simulations
for Re = 5000 running NekRS on GPUs and CPUs and Nek5000 on CPUs.

Figure 11, left, demonstrates averaged walltime per timestep, using the same data in Table 3. The
results show good weak-scaling on NekRS and Nek5000 on CPU performance. NekRS/Nek5000 CPU/GPU
weak-scaling performance using 4-846 nodes on Summit, using up to a maximum number of 5076 GPUs
and 35532 CPUs. The number of elements varies from E = 277000 to E = 60,940,000 (largest number of
spectral elements in production runs, having total 20 billions of grid points using N = 7). NekRS increases
timings slightly as the number of nodes increases. The averaged walltime per timestep is 0.3-0.6 seconds for
NekRS GPU runs, 5-6 seconds for NekRS CPU runs, and 3-4 seconds for Nek5000 CPU runs. NekRS GPU
performance keeps 8-10x speedup from 4 to 846 nodes, compared to NekRS and Nek5000 CPU performances.
Figure 11, right, shows the GMRES iterations per timestep in pressure solve for NekRS CPU and GPU runs
and Nek5000 CPU runs. This is ongoing efforts while the data for the case of E' = 120M is not available yet.

5.2 MARBL

In this section we summarize the recent GPU-related work in MARBL, including the improvements in the
Laghos miniapp. We start by introducing the newly developed Remhos (REMap High-Order Solver) miniapp,
which is modeled after the DG remap phase of MARBL.
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Figure 11: NekRS/Nek5000 CPU/GPU weak-scaling performance using 4-846
nodes on Summit, using up to a maximum number of 5076 GPUs and 35532
CPUs. The number of elements varies from E = 277000 to £ = 60,940,000
(largest number of spectral elements in production runs, having total 20 billions
of grid points using N = 7). Averaged walltime per timestep (left), measured
using 101-200 timesteps, and GMRES iterations per timestep in pressure solve
(right) are shown, using the data in Tables 2—-3 presenting 17 x 17 rod-bundle
turbulent flow simulations Re = 5000.

[ zlevels | Zzmax | E | nodes | #GPU | E/GPU | #CPU | E/CPU |
10 0.455 277000 4 24 11541.67 168 1648.81
40 1.82 1108000 15 90 12311.11 630 1758.73
120 | 5.46 | 3324000 | 46 276 | 12043.48 | 1932 | 1720.50
220 | 10.01 | 6094000 | 84 504 | 12091.27 | 3528 | 1727.32

440 20.02 | 12188000 169 1014 12019.72 7098 1717.10
880 40.04 | 24376000 338 2028 12019.72 14196 1717.10
1100 50.05 | 30470000 423 2538 12005.52 17766 1715.07
2200 100.1 | 60940000 846 5076 12005.52 35532 1715.07

Table 2: NekRS/Nek5000 CPU/GPU weak-scaling performance configurations
for 17 x 17 rod-bundle with elements of order NV = 7. The problem size is increased
by increasing the number of layers of elements in z with increasing domain size in
[0, zmax], keeping the number of elements approximately 12000 per GPU (~4.1M
points/GPU) and 1715 elements per CPU (~588K points/CPU). Timing results
are shown in Table 3.

5.2.1 Initial release of the Remhos miniapp

The CEED team has completed the initial version of the Remhos miniapp. Remhos solves the pure advection
equations that are used to perform discontinuous field interpolation (remap) as part of the Eulerian phase in
Arbitrary-Lagrangian Eulerian (ALE) simulations. The goal of the miniapp to obtain high-order accurate,
conservative, and bounds-preserving solution of the advection equation. The miniapp implements some of
the newest ideas for this problem in the context of high-order Discontinuous Galerkin (DG) finite elements,
namely, the discretization methods described in the articles [6, 5, 7, 13, 14].

The problem Rembhos is solving is formulated as a time-dependent system of ordinary differential equations
(ODEs) for the unknown coefficients of a high-order finite element (FE) function. The left-hand side of this
system is controlled by a DG mass matrix, while the right-hand side is constructed from a DG advection
matrix. This miniapp supports the full assembly and partial assembly options for deriving and solving the
ODE system. As usual, partial assembly is the main algorithm of interest for high orders. For low orders (e.g.
2nd order in 3D), optimizing both algorithms is of interest.
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z-levels | zZmax E nodes | #GPU | #CPU NekRS/GPU NekRS/CPU Nek5000 CPU

100 steps (sec) | 100 steps (sec) | 100 steps (sec)
10 0.455 277000 4 24 168 30.68 475.68 338.65
40 1.82 1108000 15 90 630 42.67 551.97 367.97
120 5.46 3324000 46 276 1932 47.74 560.82 366.79
220 10.01 6094000 84 504 3528 48.33 557.73 371.01
440 20.02 | 12188000 169 1014 7098 56.95 579.35 365.75
880 40.04 | 24376000 338 2028 14196 - - 367.59
1100 50.05 | 30470000 423 2538 17766 54.88 608.69 389.07
2200 100.1 | 60940000 846 5076 35532 60.81 - 389.78

Table 3: NekRS/Nek5000 CPU/GPU weal-scaling performance on Summit
using 6 GPUs and 42 CPUs per node for 7th-order spectral elements. Accumulated
walltime (sec) measured per Navier-Stokes timestep using 101-200 timesteps are
shown for 17 x 17 rod-bundle turbulent flow simulations for Re = 5000. The
configuration of the testing problems are detailed in Table 2.

Remhos supports two execution modes, namely, transport and remap, which result in slightly different
algebraic operators. The main difference between the two modes is that in the case of remap, the mass and
advection matrices change in time, while they are constant for the transport case.

Other computational motives in Remhos include the following:

e Support for unstructured meshes, in 2D and 3D, with quadrilateral and hexahedral elements. Serial
and parallel mesh refinement options can be set via a command-line flag.

e Explicit time-stepping loop with a variety of time integrator options. Remhos supports Runge-Kutta
ODE solvers of orders 1, 2, 3, 4 and 6.

e Discontinuous high-order finite element discretization spaces of runtime-specified order.
e Moving (high-order) meshes.

e Mass operator that is local per each zone. It is inverted by iterative or exact methods at each time step.
This operator is constant in time (transport mode) or changing in time (remap mode). Options for full
or partial assembly.

e Advection operator that couples neighboring zones. It is applied once at each time step. This operator
is constant in time (transport mode) or changing in time (remap mode). Options for full or partial
assembly.

e Domain-decomposed MPI parallelism.

e Optional in-situ visualization with GLVis (http:/glvis.org) and data output for visualization and data
analysis with VisIt (http://visit.llnl.gov).

An example of a remap test is shown in Figure 12. Remhos-1.0 was released as part of CEED-3.0.

5.2.2 Laghos miniapp improvements

By utilizing the new capabilities of MFEM-4.1, the performance and codebase of Laghos were improved
significantly. The MFEM-4.1 code infrastructure allows to combine all major versions of Laghos (baseline
CPU, CUDA, HIP, OCCA and RAJA, as explained in CEED-MS25) into a single reusable source code. This
eliminates the need of having different source codes into different folders for each version, allowing reusability,
easier maintenance, and direct access to future optimizations.

More importantly, the original partial assembly kernels are replaced by the connection to the optimized
MFEM routines, e.g., methods for mass action, calculation of geometric factors, evaluations of FE functions
at quadrature points. Laghos also utilizes the MFEM’s newly developed GPU-based small dense matrix and
vector operations, which are used by its quadrature-level physics-related computations.

These improvements are available in the latest release, Laghos-3.0, which was released as part of CEED-3.0.
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Figure 12: Example from Remhos demonstrating a high-order monotonic and
conservative remap calculation with different amounts of mesh distortion.

5.2.3 GPU work in MARBL

The focus of the GPU efforts in MARBL has been on porting the Lagrangian phase of the simulation,
where the mesh moves with the material velocity, and the remap phase, where solution fields are transferred
from one mesh to another. The MARBL team has been utilizing the GPU infrastructure of MFEM-4.1
and collaborating with the CEED researchers to port and optimize various sections of the code. In the
period November 2019 - March 2020, the MARBL team has been able to reduce the computational time
of the GPU-enabled tests by a factor of around 4x. Preliminary results have demonstrated performance
improvements between 2x and 10x in select routines when comparing a node of Power 9 + V100 (4 MPI
ranks, 1 MPI rank per GPU) to Intel Xeon E5-2695 (36 MPI ranks). Since not all parts of the code have been
ported to the GPU, large memory transfers are still needed to complete a full simulation. These memory
transfers are still the main bottleneck. Result obtained by a GPU simulation is shown in Figure 13. In this
section we give more details about the latest GPU additions.

Lagrangian phase GPU work. Since this phase is what the Laghos miniapp models, the work in MARBL
has been aided by the GPU implementation available in Laghos. This phase has three major components:
inversion of a global CG mass matrix, computation of physics-specific quadrature point data, and application
of a force operator.

The global CG mass matrix inversion is fully ported on GPUs. The device mass action kernels are very
similar to the ones in MFEM, but currently live in the BLAST code, as the previous MFEM implementation
did not support non-constant integral coefficients. Since such coefficients has been recently implemented in
MFEM-4.1, the MARBL team is planning to switch to using the optimized MFEM versions.

The calculation of quadrature point data, i.e., forming the D matrices for the mass and the force operators,
has similar structure as Laghos, but requires many additional physics-specific computations. These methods
make heavy use of element-local small vector and matrix operations, e.g., for computation of geometric
factors and quadrature interpolation. For these, the MARBL team is utilizing the recently introduced GPU
implementations in MFEM-4.1. This is an ongoing effort and not all parts of the source have been ported.

The action of the force operator has been fully ported. The MARBL implementation utilizes the partial
assembly kernels from Laghos, while the GPU-specific routines have been implemented locally. The MARBL
team is planning to replace these with the implementation that has recently become available in Laghos.

Unlike Laghos, the Lagrangian phase of MARBL contains a computation of a hyperviscosity coefficient,
which involves consecutive applications of a Laplacian operator. This method has also been ported on the
GPU by applying directly the MFEM’s optimized diffusion integrator kernels.

Remap phase GPU work. The remap algorithm has two main components, namely, velocity remap,
which is a CG advection solve, and remap of other fields, which is modeled by DG advection. The DG method
is nonlinear, involving 3 separate components, namely, a high-order (HO) method, a low-order (LO) method
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Figure 13: MARBL result obtained on 32 NVIDIA Tesla V100 GPUs at LLNL.

and a nonlinear flux-corrected transport (FCT) procedure. Currently, all of these three components require
sparse matrices.

The CG advection solve is fully ported, which includes the computation of quadrature data and application
of the CG mass and advection matrices. Similarly to the CG mass matrix inversion in the Lagrangian phase,
the remap GPU code is implemented inside MARBL, and switching to using the optimized MFEM kernels is
planned.

Using the MFEM infrastructure, the MARBL developers have developed custom GPU code to populate
the sparsity of the advection sparse matrix, thus achieving LO and HO implementations for the GPU. It is
expected that this approach will be improved significantly by the work in Remhos, as it contains matrix-free
methods to obtain LO and HO solutions. The FCT procedure is also fully ported to GPUs.

Future GPU work. As already mentioned, there are ongoing efforts to transition from customized GPU
kernels to their optimized MFEM versions, e.g., for the application of the force operator and the CG mass
matrices. The MARBL team will also continue to integrate the MFEM’s new GPU routines for small dense
matrices and vectors. It is expected that using the MFEM kernels will lead to better performance. The
CEED developers will keep developing the Laghos and Remhos miniapps, both in terms of GPU performance
and matrix-free methods capabilities, and these new methods and implementations would be readily available
to be used in MARBL.

5.3 ExaWind

In collaboration with the ExaWind team, we have developed high-order atmospheric boundary layer (ABL)
models with the ultimate goal of simulating wakes in the far field regions of wind farms. These regions have
minimal geometric complexity and would be well-suited to treatment by high-order discretizations that can
deliver the required accuracy with an order-of-magnitude fewer grid points than second-order schemes [22].

This work involves efforts by Ananias Tomboulides (AUTH, ANL) from the CEED/Nek team and Matthew
Churchfield, Shreyas Ananthan, Michael Sprague from the ExaWind team at NREL. The plan is to develop a
bake-off study toward the cross-verification and validation of our LES results and corresponding wall models,
involving Nek5000/NekRS, NaluWind, and AMReX that will be reported as a journal article. Here we
describe the background on ABL and provide current status of this ongoing effort with some preliminary
performance result as well as a newly developed uRANS approach, k-7 model.
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Figure 14: Nek5000 strong-scaling performance for ABL simulations (Re =
50000) using E = 10240 and E = 640 with N = 7 on Summit. (Left) Running
on 672 cores (16 nodes, 42 cores per node) using 5226 points per core, it reaches
strong-scale limit (90% efficiency) with averaged timing of 0.07 seconds per
timestep. (Right) Running 84 cores (2 nodes, 42 cores per node) using 2613
points per core, it is below strong-scale limit with 56 % efficiency.

5.3.1 Atmospheric Boundary Layers for Wind Applications

Efficient simulation of atmospheric boundary layer flows (ABL) is important for the study of wind farms,
urban canyons, and basic weather modeling. The ABL is directly affected by the Earth’s surface. When the
surface is colder than the air, the layer close to the ground becomes a stably stratified boundary layer (SBL),
which is classified according to the intensity of the thermal stratification. SBL flows can be some of the
most damaging flows for wind turbines [16]. These flows can typically be simulated by using the Boussinesq
approximation which also allows propagation of gravity waves. The lower turbulence levels mean that turbine
wakes persist for longer distances downstream, and hence can decrease the efficiency of a wind plant. The
stable ABL can also contain a low-level jet, a layer of flow that has speed greater than the flow above the ABL.
All of these features of the stably stratified ABL make it important and challenging to simulate accurately.
Moreover, changes in the large eddy simulation (LES) turbulence model used can lead to large differences in
flow and heat transfer predictions. It is important to perform a high-fidelity LES simulation of stable ABL
flows as well as development of improved wall models.

5.3.2 Atmospheric Flows Test Problems and Baseline Performance on Summit

In collaboration with ExaWind researchers, the CEED Nek team has focused on developing reliable high-
fidelity LES-model implementations for stable ABL flows and improved wall models. Our implementation
of wall models, for smooth or rough walls, based on log-law behavior is performed by imposing traction
boundary conditions specified through boundary integral terms ([12, 17, 21]). This approach differs from
the one used in finite volume codes and requires the specification of the traction boundary location in wall
units. A well-documented stably stratified atmospheric boundary layer benchmark problem that can be used
for these purposes, i.e. for model and code comparison, is the Global Energy and Water Cycle Experiment
(GEWEX) Atmospheric Boundary Layer Study (GABLS) ([2, 3, 1]). Continuation of this effort will involve
performance comparisons on CPUs and GPUs between three different codes, Nek5000/NekRS, NaluWind,
and AMReX, representing unstructured or structured high-order, structured low-order, and block-structure
AMR discretizations, respectively. Proposed configurations for the bake-off study are the following.

e Perform scaling studies and comparison on CPUs and GPUs.

e Use box geometries representing physical domain [400m x 400m x 400m], or multiples thereof for
weak-scaling studies.
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e Implement traction boundary conditions (BCs) horizontally at the bottom; symmetry BCs on the top;
and periodic BCs in the horizontal directions. The results of the traction BC have to be very close to
those of highly-refined simulations having no-slip BCs at the bottom.

e Initiate tests with resolutions of a coarser mesh, £ = 640 (= 8 x 8 x 10), and a finer mesh, E = 10240
(=16 x 16 x 20), with N = 7, representing total grids n = 219,520 and n = 3,512, 320, respectively.

e Use statistically same initial condition (restart or perturbed one) once the numerical solution evolves to
a developed (but still transient) turbulent state and run a specific range of physical time units (not
fixed number of timesteps).

e Study accuracy, convergence and performance of two different LES models, HPF (high-pass filter) and
WALE models, are to be demonstrated for a fixed resolution.

e Use Reynolds numbers in the range of Re = 50,000 to Re = 100, 000.

The CEED Nek team was able to develop SEM algorithms and validate the implementation of the ABL
model in Nek5000. Figure 14 demonstrates preliminary results of ABL simulations for Reynolds number
of 50,000 on Summit’s CPUs with strong-scaling studies for two different resolutions using £ = 10240 and
E = 640 with N = 7. Figure 14, left, shows 90% efficiency on 672 cores (16 nodes, 42 cores per node) using
5226 points per core, with averaged timing of 0.07 seconds per timestep — this is close to its strong-scale limit.
Figure 14, right, shows 56 % efficiency on 84 cores (2 nodes, 42 cores per node) using 2613 points per core —
this is below the strong-scale limit of Nek5000.

As the next step, the CEED Nek team is planning to extend ABL implementation in Nek5000 (CPU) to
the new NekRS (GPU) code. The ExaWind team is currently moving forward with the testing stage of their
ABL implementation in NaluWind and AMReX. Weekly telecons between the CEED/Nek and Exawind
teams have helped to solidify the problem definition and feasible approaches to robust implementations.

5.3.3 Newly Developed Regularized uRANS Approach, k — 1™ Model

We have developed, implemented, and validated a regularized version of the k—~w RANS model (also referred
to as k — w’ that avoids the singularity in w at wall boundaries through the use of asymptotic expansions
[24]. More recently, CEED Nek team has implemented an SEM-based version of the k—7 model [15] that
does not suffer from singular behavior at walls. From preliminary verification tests, we found that the k — 7
model gives the same results with the £ — w model but its main advantage is that it does not rely on the
wall-distance function or its derivatives and the terms appearing in the right-hand-side of the model equations
are bounded close to walls. We will continue investigating this model more extensively and to use it further
for the study of more complex flows.

Currently we have tested preliminary studies on the k —w and k — 7 models in a number of benchmark
internal flows, such as turbulent channel flow, flow past a backward-facing step, as well as external flows,
such as flow past a wind turbine blade and the NACAQ012 airfoil at 0° and 10° angle of attack (aoa) [19].
For external flows, we have investigated the performance of several limiters, commonly used in the RANS
literature, for the production terms in the ¥ — w and the k — 7 equations as well as for the eddy viscosity.
Two versions of the model were evaluated that differ in the values of some of the model coefficients [25],
[26] (noted as kw98 and kw06, respectively); the 2006 model includes an additional cross-diffusion term. As
an example, the performance of the models was tested for the flow past a NACA0012 airfoil for Reynolds
number of 6 millions at aca = 0° and 10°, with varying free-stream conditions; fully converged results for the
drag and lift coefficients were obtained even for zero free-stream values of k£ and results for all cases agree
very well with benchmark solutions obtained by Nek5000. (see Figure 15 and Tables 4-5). We are currently
extending this effort into NekRS to support running on GPUs.

5.4 ExaAM

The ExaAM project couples microstructure development and local property analysis with process simulation.
Given the length scales, physical mechanisms, and response characteristics of interest, finite element codes
employing crystal-mechanics-based constitutive models were chosen by the project as the appropriate
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(b)

Figure 15: RANS models into Nek5000: k-7 and wall function models, allowing

(a)

coarser resolutions NACA0012 RANS simulations for airfoil, Re = 6M. (a)
velocity component v, (top) and pressure (bottom) profiles for aoa = 0°. (b)
velocity component v, (top) and pressure (bottom) profiles for aoa = 10°.

Table 4: Drag and lift coefficients (aoa=0). Experimental data: NASA-TM-

4074 [18].
Nek5000 results References Exper.
model | kw98 (N=7/N=11) | k798 (N=7) | kw06 (N=7/N=11) | k706 (N=7) | CFL3D | FUN3D
drag 0.00872 / 0.00843 0.00842 0.00861,/0.00833 0.00832 0.00854 | 0.00837 | ~0.0081
lift +1E-5/+1E-5 1.55E-5 +1E-5/+1E-5 1.21E-5 ~0 ~0 ~-0.01
Table 5: Drag and lift coefficients (a0oa=10). Experimental data: NASA-TM-
4074 [18].
Nek5000 results References Exper.
model | kw98 (N=7) | kr98 (N=7) | kw06 (N=11) | kr06 (N=7/N=9) | CFL3D | FUN3D
drag - 0.01507 0.01391 0.01468/0.01432 0.01259 | 0.01297 | ~ 0.012
lift - 1.0582 1.0639 1.0592/1.0609 1.0958 1.1012 ~ 1.075

computational approach for the microstructure-to-properties aspect of the overall ExaAM problem. Since
none of the existing crystal mechanics-based codes were suited to the ExaAM needs, the ExaAM team
is creating an application, ExaConstit, specifically for local property analysis. This development is a
collaboration between ExaAM and the CEED teams.

ExaConstit’s first release was focused on the ExaAM local property analysis, but as required, additional
physics, inline results processing, and other features will be added to meet wider ExaAM needs. Significant
integration between the ExaAM and CEED ECP activities is planned during this process. The application
has been released under a BSD-3 clause license and is freely available on GitHub at https://github.com/
LLNL/ExaConstit.

5.4.1 The ExaConstit miniapp

The main development work in the FY20 Q2 quarter has been transitioning ExaConstit over to a finite
element formulation that can run on the GPU. This new formulation is based on partial assembly formulation
of the linearized portion of the nonlinear PDE. This partial assembly formulation follows the CEED finite
element decomposition framework, as exemplified for example by the libCEED user interface. It allows
ExaConstit to take advantage of tensor contraction operations in-order to achieve the lowest number of
FLOP count and memory storage requirements. Outside of this reformulation, ExaConstit was refactored to
take advantage of the various parallelization abstraction layers introduced in MFEM v4.0 to allow various
compute and material kernels to run on the GPU.
Some of the development activities between ExaConsit and CEED are summarized below:
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Figure 16: ExaConstit: ExaCA generated grain microstructure that approxi-
mates AM processes for a 8e6 element mesh.

e Refactored ExaConstit in order to be able to make use of a partial assembly formulation for the linear
solve portion of the Newton Raphson solve

e Formulated a partial assembly formulation for general solid mechanics problems
e Implemented this formulation into ExaConstit

e Converted most major loops over to using MFEM_FORALL loops which allows the flexibility at runtime to
choose between different backend to run the kernels on (CUDA, HIP, OpenMP, CPU, RAJA-CUDA,
RAJA-OpenMP, RAJA-CPU, ... etc)

e Initial demonstration of running everything on the GPU has shown promising results compared to the
old CPU full assembly performance

Over the course of the ExaAM activity, the plan is for ExaConsit to make use of the MFEM capabilities for
higher-order finite elements with the goal to achieve unprecedented fidelity in the resolution of microstructure-
level material response features that are important for resolving initiation events such as the nucleation and
growth of porosity.

5.4.2 Results from a demonstration problem

As a part of a recent ExaAM milestone, we consider test problems centered around an ExaCA-generated
[ExaCA/FY19Q1] microstructure for 316L [FY18Q3]| stainless steel. One model being used is from ExaCMech
that make use of a Voce hardening model. The Voce hardening model is a basic crystal plasticity model but
contains enough physics for our current needs. The mesh is 100 x 100 x 100 = 10° elements, and this mesh is
a discretization of a polycrystal with 500 grains. This problem size is chosen to be relevant to anticipated
long-term challenge problem needs, in terms of the number of grains involved. As mentioned below, the
challenge problem is likely to ultimately require finer discretization (more elements per grain) to accurately
inform macro-scale models.

An additional ExaCA-generated microstructure produced from an analytical heat transfer solution to
mimic an AM built part is examined as seen in the below Figure 16. The mesh is 200 x 200 x 200 = 8 x 106
elements and is a discretization of a polycrystal with 380 grains.

A set of simulations were run using ExaConstit on the CPUs only and GPUs. These runs provided
information about the strong scaling of ExaConstit while being run on CPUs and GPUs for ExaAM-relevant
calculations. On Summit, ExaConstit and its dependent libraries have all been compiled using the GCC 7.3
and 8.1 compiler suites in combination with the NVCC compiler suite. They have also been compiled against
the clang 6.0 compiler combined with the use of gfortran 7.3 for the UMATS.
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Figure 17: ExaConstit: Strong scale study conducted on Summit ExaCMech
model for CPU and GPUs.

Nodes (#) | CPU Time(s) | GPU Time(s) | GPU Scaling Factor (-)
1 5307 3078 1.72
2 2747 1513 1.82
4 1402 839 1.67
8 800 324 2.47
16 425 155 2.74
32 236 131 1.80

Table 6: ExaConstit: Timings of strong scale study conducted on Summit for
le6 element mesh.

Nodes (#) | CPU Time(s) | GPU Time(s) | GPU Scaling Factor (-)
8 - 6166 -
16 9785 3182 1.82
32 3110 1789 1.74
64 1659 709 2.34

Table 7: ExaConstit: Timings of strong scale study conducted on Summit for
8e6 element mesh.

The full ExaCA generated microstructure is used on a mesh that uses ¢3d8 type elements (with 8
quadrature points per finite element). The simulations were taken out to 1% strain in tension. The Figure
17 below summarizes the strong scaling as a function of time and number of nodes for both the CPU only
and GPU runs. The wall clock time for each simulation is provided in a table down below to highlight the
difference in performance in the two different runtimes along with the scaling factor of the GPU over the
CPU. The dashed lines in the below highlight what runtimes perfect strong scaling would have. Any points
below the dashed line represent super scaling and those above represent less than perfect scaling.

Based on the above, one of the most interesting observation is the appearance of a super-scaling phenomenon
within the GPUs once a given workload per GPU is reached. If we plot this workload per GPU in Figure 18
it is apparent that this starts around 125k quadrature points per GPU. As the GPU code becomes more
performant, it’ll need to be seen if these same observations continue to exist.
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Figure 18: ExaConstit: GPU strong scale study as a function of data residing
on each GPU.

5.5 Additional Applications: E3SM, NRC, VTO

The CEED team is reaching out to additional applications in the ECP and also to non-ECP projects from
funded by DOE and other agencies (e.g., the DOE’s Vehicle Technology Office; the Nuclear Regulatory
Commission) to leverage CEED’s high-order technologies.

e E3SM. In collaboration with E3SM, the CEED team is identifying a set of Helmholtz problems on the
surface of a sphere as a relevant benchmark problem. The Helmholtz equations are derived from the
primitive equations describing atmospheric flow and represent the challenging fast gravity waves that
otherwise restrict the timestep size in the general circulation model if treated explicitly. The plan is to
develop efficient algorithms for solving 128 Helmholtz equations, where each of the equations represents
the pressure level at a different vertical wavenumber. The dynamical core for E3SM is based on a
spectral element method in the horizontal directions, which is directly aligned with CEED’s high-order
motif. Preconditioning strategies for these high-order methods are essential to make the proposed
semi-implicit strategy competitive with pure explicit timestepping. Several groups in CEED and E3SM
have expressed interest in holding a bake-off to identify the fastest strategy. Once the study identifies
a fast scheme with low iteration counts, the hope to guide E3SM in developing a fast semi-implicit
timestepping approach.

e Nuclear Regulatory Commission (NRC). Nek5000 and NekRS have been designated to help the
DOE and the Nuclear Regulatory Commission in licensing processes for nuclear reactor technology.
Through the new initiative, members of the CEED project will work with the DOE’s National Reactor
Innovation Center to provide the NRC with thermal-hydraulics modeling codes. DOE will also provide
the NRC access to state-of-the-art computing capabilities in support licensing of advanced reactors.
Access to these updated codes and facilities will help expedite the review process and be used to predict
expected reactor operations to reduce the time it takes to validate and certify new designs, enabling a
faster commercialization process.

e Vehicle Technology Office (VTO). Argonne scientists in the Energy Systems Division have been
funded by DOE’s Vehicle Technology Office to use Nek5000 for multicycle simulations of internal
combustion engines. Argonne CEED team members are indirectly supporting this project through
assistance with modeling, meshing, and code performance. The GPU simulation capabilities of NekRS
will be a critical component for success of this project.

e Other applications. The CEED team is also participating in ECP-organized outreach activities to
industry, international partners, and project from NASA and non-ECP DOE labs.
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6. ADDITIONAL HARDWARE AND PROGRAMMING MODELS

This section describes some recent efforts in adding/improving support for additional hardware and program-
ming models in the CEED software components.

6.1 Support for AMD GPUs

The Frontier system is expected to be online at OLCF in 2021. It will be equipped with purpose built AMD
Radeon Instinct GPUs whose specifications that have not yet been unveiled. However it is known that these
GPUs will be programmable using the AMD heterogeneous-Compute Interface for Portability (AMD HIP).

CEED researchers are actively engaged with porting to and evaluation of AMD GPUs in preparation for
the AMD-based Frontier machine. Activities in this area include: support for HIP in OCCA and MFEM;
initial MFEM performance runs on the LLNL Corona cluster, which has Radeon Instinct MI25 GPUs
(weak double precision); initial results with 1ibParanumal on Radeon VII (good double precision) which on
certain benchmarks have achieved over 75% of the NVIDIA V100 peak performance at 10% of the cost; and
collaboration with AMD on fixing slow linking times with the HIP compiler which was reported to hamper
development at the CEED annual meeting, and was addressed by AMD engineers within a couple of weeks.

6.1.1 MFEM backends improvements

MFEM version 4.0 introduced new GPU capabilities and support for hardware accelerators such as CUDA,
OCCA, 1ibCEED, RAJA and OpenMP. The newly releases MFEM version 4.1 brings several backend
improvements, such as:

e the support for AMD GPUs based on HIP, which is a C++ runtime API and kernel language that can
run on both AMD and NVIDIA hardware,

e the improvement of the RAJA backend which offers the same level of performance when targeting
NVIDIA’s hardware,

e the optimization of multi-GPU MPI communications,

e one special debug device specifically designed to aid in debugging GPU code, by following the device
code path (using separate host/device memory spaces and host = device transfers) without any GPU
hardware.

The MFEM memory manager now also supports different memory types, associated with the following
memory backends:

e Default host memory, using standard C++ new and delete,

e CUDA pointers, using cudaMalloc and HIP pointers, using hipMalloc,

Managed CUDA /HIP memory (UVM), using cudaMallocManaged / hipMallocManaged,

Umpire-managed memory, including memory pools,

32- or 64-byte aligned memory,

e Debug memory with mmap / mprotect protections used by the new debug device.

6.1.2 Porting libParanumal

It typically takes considerable effort and time to tune up a GPU application so that it fully exploits the
hardware and we describe key parts of that process here and provide some results from an initial tuning
effort.

Tuning kernels for a typical GPU model first requires us to understand the microarchitecture of the
GPU cores (for instance register file and SIMD characteristics), the size of the caches at every level of the
memory hierarchy, and the memory access latencies and bandwidths within the hierarchy. For NVIDIA GPUs
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much of this information has been released by NVIDIA or reverse engineered by the micro-benchmarking
community for Pascal and Volta series GPUs. Unfortunately this information is not readily available for
current generation AMD GPUs and is obviously not available for the GPUs publicly released for the 2021
models. A particular challenge when porting from the NVIDIA Volta class to the current generation of
AMD GPUs is the limited hardware support for atomic operations, and this necessitates some additional
workarounds and code regression to achieve portability from NVIDIA to AMD GPUs.

The second step in tuning GPU kernels is to understand the idiosyncrasies of the GPU kernel compiler.
With a decade of experience in using the now mature NVIDIA nvcc compiler it is possible to predict how
it will transform a given CUDA or OpenCL kernel into GPU binaries. We do not have the same extensive
history of working with the relatively new and still rapidly developing AMD HIP compiler hipcc. However,
recently with the latest releases it has matured significantly and we are actively working with the AMD
Research team to understand the behavior and current best practice for squeezing high performance binaries
out of hipcec.

The third step in optimizing GPU kernels is refactoring the base kernel implementation to migrate data
through the caches of the memory hierarchy to the GPU core registers in an efficient manner while not
flooding the limited cache capacities at each level. The eventual goal is to follow Vasily Volkov’s advice
on GPU optimization and exploit every available cache, while not necessarily being too concerned about
occupancy of the GPU cores. This process relies on understanding the compiler code generation tendencies.
We have found with hipcc that the register usage of generated kernels is highly sensitive to using loop
unrolling, much more so than the nvcc compiler. With full unrolling we determined that the current hipcc
compiler is prone to spilling registers to global GPU memory and that occupancy also is heavily impacted.
Thus existing CUDA kernels that rely on the way that nvcc chooses to unroll loops can perform poorly when
compile using HIP and run on AMD GPUs.

The fourth GPU optimization step is to search the space of possible kernels to determine cache blocking
parameters, unrolling parameters, and thread work assignments that hit the sweet spot for performance.
Fortunately the AMD hipcc compiler compilation times have significantly improved enabling comprehensive
searches. To build experience we are initially performing this through a manually guided search in kernel space
based on a decade of GPU tuning experience. However, it is becoming that with the new HIP compiler and
AMD GPU architectures it will be prudent to develop a semi-automated kernel tuning framework. It makes
most sense to do that with the CUDA-gen backend developed at LLNL for libCEED, see the CEED-MS32
report.

Finally, in the absence of the actual Frontier 2021 era AMD GPUs we decided to start the tuning warm
up process using the currently available AMD Radeon VII GPU. We have unlimited access to locally installed
Radeon VII GPUs and they have a hallmark device memory bandwidth of 1TB/s, reasonable FP64 throughput
of 3TFLOPS/s, and most importantly can be programmed using AMD HIP or OpenCL. Throughout this
process we use a combination of profiling and roofline modeling to determine what the primary performance
limiters are and how close to reasonable peak performance each generation of tuned codes can achieve.

We started the tuning process by taking BP1, BP3, and BP5 conjugate gradient solvers implemented in
benchParanumall using OCCA and tuned for the NVIDIA Volta class GPUs, generating reference timings for
the NVIDIA Titan V and then timing them on the AMD Radeon VII. We then used performed a manually
directed tuning process to try to find kernel implementations that perform relatively well on both the AMD
and the NVIDIA GPU, i.e. we are attempting to develop kernels that are truly performance portable despite
different characteristics of the GPUs from the different vendors and their respective tools ecosystems.

In Figure 19 we show the relative performance of different generations of BP3 kernels that are progressively
tuned to achieve high performance on both the AMD Radeon VII and the NVIDIA Titan V. To eliminate
peripheral issues related to kernel launch latencies we used over 15,000 degree 7 hexahedral elements with
a tensor-product arrangement of 9 point Gauss-Legendre rules for integration. The figure illustrates the
progression in performance representative generations in the tuning process. We see that the seed code
(generation zero) performed better for the Titan V than the Radeon VII GPU as one would expect given that
the code had been previously tuned for NVIDIA GPUs. By the fourth generation we see that the performance
is reversed as we over corrected for specific details of the AMD GPU. By generation 13 we see that a sweet
spot for both GPU models was found and that it does not significantly reduce performance compared to the
best achieved GPU performance from prior generations. There is still significant tuning required to achieve
roofline limited performance on the AMD Radeon VII. It has a significantly higher device memory bandwidth
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Figure 19: Generations of BP3 implementations tuned to attain high throughput
for both the AMD Radeon VII and NVIDIA Titan V GPUs.

than the NVIDIA Titan V, but is achieving approximately the same performance for the BP3 benchmark
problem. We anticipate that as the AMD HIP compiler matures and as we gain more experience with the
AMD GPU that we will be able to further improve performance.

6.1.3 hipMAGMA

We ported MAGMA to HIP and made an initial hipMAGMA version 1.0 release on March 9, 2020. hipMAGMA
is based on MAGMA 2.5.2 and provides the MAGMA 2.5.2 functionalities to AMD GPUs. All CUDA-based
sources in MAGMA 2.5.2 are converted to HIP. Installation and scripts to do the conversion were developed
and provided with the release. Thus, there is a single source to maintain, that is currently CUDA-based, and
other backends are automatically generated. The library can be installed to support either NVIDIA GPUs or
AMD GPUs through a single interface. We note that the effort to add support for AMD GPUs was fairly
light. Currently, we have complete functional port for the entire MAGMA library. Performance portability is
derived from the use of the BLAS standard and its optimized implementations, either from vendors or other
open source libraries, like MAGMA.

Architecture-specific optimizations are typically needed for dense linear algebra. Besides using BLAS, we
included specific optimizations and tuning for some of the BLAS routines. We also developed and released a
number of BLAS kernels that are not available in hipBLAS yet. This included SYMM, SYRK, and SYR2K
for all IEEE floating-point arithmetic precisions. The developments were done through CUDA and released
through MAGMA 2.5.3 on March 29, 2020. MAGMA 2.5.3 is also integrated in the CEED 3.0 release, see
Section 3.

Enabling MAGMA for AMD GPUs based on the HIP Runtime. The MAGMA backend for libCEED
is hybrid in the sense that it relies on both customized kernels that are solely developed for libCEED, as well
as existing linear algebra kernels (BLAS) that are already part of the MAGMA library. The first step towards
supporting modern AMD GPUs is to build an interface for the HIP runtime inside MAGMA. This abstraction
of runtime and vendor-supplied math libraries seamlessly allows MAGMA to run on top of the cubA and
the HIP runtimes. The initial release of hipMAGMA enables all of the runtime functionalities required for
libCEED (e.g. memory management and data transfers). It also provides most of the compute-bound BLAS
kernels that are critical to the non-tensor basis action in libCEED backends.
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In order to assess the quality of the “hipMAGMA backend” for libCEED, benchmarks for standard linear
algebra kernels can give helpful insights about how far we can push AMD GPUs for both memory-bound
and compute-bound kernels. In fact, the standard matrix multiplication (dgemm) and its batched variant
(dgemm_batched) are used in the non-tensor basis actions in libCEED. The performance of these kernels inside
libCEED is better to be put in perspective by comparing it to performance tests that are designed to test the
achievable compute power and memory bandwidth of AMD GPUs. Figure 20 illustrates the performance
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Figure 20: The matrix-vector multiply benchmark in double precision (DGEMYV).
Results are shown for the Tesla V100 GPU (CUDA 9.1) and the MI50 GPU (HIP
3.0).

of a memory-bound kernel, the standard matrix-vector multiply operation in BLAS. On each GPU, the
results combine the best performance observed from the vendor BLAS (cuBLAS or hipBLAS) and the
MAGMA BLAS kernels. On the Tesla V100 GPU, the performance is very close to the theoretical peak
bandwidth (93% out of 900 GB/s). On the MI50 GPU, the best recorded performance is about 78% of the
peak bandwidth (1024 GB/s). Although the MI50 GPU has a higher theoretical bandwidth, the achievable
(today) performance is less than that on the V100 GPU. This can be due to the fact that several technologies
for AMD GPUs (hardware, compiler, runtime, and others) are not as mature as the NVIDIA GPUs and the
CUDA Runtime.

Figure 21 shows a compute-bound benchmark; the matrix-matrix multiplication kernel (DGEMM). Similar
to the DGEMV benchmark, the achievable (today) DGEMM performance on the V100 GPU is significantly
better than that on the MI50. Although the MI50 GPU has a theoretical peak performance of 6.6 Tflop/s,
the DGEMM performance stagnates at ~ 5 Tflop/s. For this specific benchmark, both cuBLAS and hipBLAS
(assembly GEMMSs) outperform the (CUDA/HIP GEMM) kernels available in MAGMA [20]. However, we
observe that the MAGMA kernels usually perform better on NVIDIA GPUs than on AMD GPUs, even when
tuning is taken into account. As an example, the MAGMA DGEMM kernel reaches up to 5.9 Tflop/s of
performance on the V100 GPU (84.3% of the best cuBLAS performance). The same code was “hipified” and
tuned for the MI50 GPU, but no more than 2.5 Tflop/s was achieved (51% of the hipBLAS performance).
Our current experience with the hipcc compiler shows that maybe a different set of optimizations/practices
have to be considered for AMD GPUs. It is also possible that the hipcc compiler will drastically evolve in
future releases, as it is a fairly recent compiler.

The reason behind benchmarking the batched DGEMM kernel is that it can outperform the regular
DGEMM kernel for some use cases in the non-tensor basis action of the MAGMA backend, which we highlight
next. Figure 22 shows the performance of the batched DGEMM [4] operation on both GPUs for square sizes.
The performance behavior is similar, with a slightly lower percentage for the MI50 GPU, and less stable
performance on both GPUs. However, it is interesting to point out that the MAGMA kernels were able to
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Figure 21: The matrix-matrix multiply benchmark in double precision
(DGEMM). Results are shown for the Tesla V100 GPU (CUDA 9.1) and the
MI50 GPU (HIP 3.0).
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Figure 22: The batched matrix-matrix multiply benchmark in double precision
(DGEMM). Results are shown for the Tesla V100 GPU (CUDA 9.1) and the
MI50 GPU (HIP 3.0).

outperform the vendor-BLAS for relatively small sizes. On the Tesla V100 GPU, the MAGMA kernels were
better than cuBLAS for sizes less than 100. On the MI50, the MAGMA kernels outperformed hipBLAS for
sizes less than 400.

BLAS Performance for Non-tensor Basis Action in libCEED. The non-tensor basis action in libCEED
can be performed using the GEMM kernel. The standard DGEMM operation is defined as an update to a
Matrix C such that: Cpruny = @Aprxx X Bxxn +8Crxn- In terms of the call configuration inside libCEED,
the DGEMM operation may involve a transposition of A. Considering the common sizes in the libCEED
bake-off problems, the values of M and K are relatively small, compared to N. In fact, N = nelem x ncomp,
where nelem is the number of elements and ncomp is the number of components. The shape of the DGEMM
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operation is shown in Figure 23. Ideally, a single DGEMM operation would be enough to operate at the
GPU peak performance. However, the relatively large value of N can be broken down into smaller sizes that
are independently processed as a batch, hence using batched DGEMM is also a viable option in the MAGMA
backend.
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M

Figure 23: Shape of the DGEMM operation for the non-tensor basis action in
libCEED.

Figure 24 shows the performance of DGEMM and its batch variant for three typical problem sizes in the
non-tensor basis action in libCEED. The figure shows the performance for the V100 and the MI50 GPUs.
The first observation is that relatively larger problems can be compute bound as they achieve around 80%
of the DGEMM peak on the same hardware. Another observation is that the batch DGEMM can be quite
competitive with the regular DGEMM, which is the case for the V100 GPU, where the batch DGEMM
performance is better than or equal to the regular DGEMM performance. On the MI50, however, the
performance inconsistency of its batch DGEMM results in some winning scenarios for the regular DGEMM
kernel. The MAGMA backend will provide tuning mechanisms to decide the kernel to be invoked and the
best tuning parameters for the given problem size.
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Figure 24: Performance for the non-tensor basis action in libCEED for typical
problem sizes using DGEMM and Batch DGEMM.

Status of Runtime Compilation for HIP. Currently, the CUDA and MAGMA backends make use of
nvrtc for runtime compilation. Many of 1ibCEED’s runtime parameters, such as the order of the basis functions
and the number of quadrature points, should actually be known at compile time in order to produce efficient
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GPU code through the use of register memory and the possibility for more compiler optimizations. To this
end, the CUDA backends use runtime compilation with nvrtc to produce the kernels for element restrictions,
basis actions, and quadrature functions (QFunctions) — or, in the case of the CUDA-gen backend, to produce
the fused operator kernel. The MAGMA backend, on the other hand, takes the approach of using kernel
templates. However, as the QFunction is allowed to be defined by the user in a single C-style source file,
some sort of runtime compilation is still necessary to be able to turn a user-specified function into GPU code.
Indeed, the current MAGMA backend reuses the QFunction action of the CUDA-ref backend.

A hiprtc tool, meant as a HIP replacement for nvrtc, has been available in HIP since May 2019, with
updates coming in late 2019 and early 2020. Lack of official documentation or information about its use left
its ability to replace nvrtc in 1ibCEED backends as a crucial but open question for HIP backend development.
Recently, the CEED MAGMA team began working on porting the nvrtc-related code from the CUDA-ref
backend in order to test the current status of hiprtc. An experimental “HIP-ref” backend has been created
with fairly minor changes related to replacing nvrtc, such as adding an include statement for the HIP runtime
header in the source of the compiler calls and modifying the names of single-character parameters passed to
the compiler as macro definitions. There is the potential for more disruptive changes required due to hiprtc
using features not included in HIP’s current C-only header file, but these challenges, if they occur, should be
surmountable. As the use of hiprtc for the QFunction action has been demonstrated and hipMAGMA is
released, the HIP version of the current MAGMA backend is now definitively possible. CUDA-gen-style code
generation may also be possible for HIP through hiprtc. The performance of hiprtc in terms of compilation
speed and quality of code produced is still unknown; however, as hiprtc is still under active development, it
can reasonably be expected to improve if it is found to be significantly inferior to nvrtc.

6.2 Support for Intel GPUs

The CEED team is actively engaged with Intel in preparation for the Intel-based Aurora architecture.
Activities in this area include: performance projection for Nekbone on the new Aurora architecture, estimated
to achieve over 50x FOM speedup over Sequoia’s baseline; attending the Aurora workshop at ANL (9/17-9/19,
2019) by 5 CEED members; initial porting of NekRS to an Aurora development system, running NekRS in
OpenCL mode (via OCCA) on a single Intel Gen9 GPU; and further kernels optimization of OCCA, libCEED,
libParanumal, and Nek5000 planned and/or in development.

Table 1 demonstrates NekRS baseline of performance measured on a single GPU on V100 and Intel Gen9.
Simulations are performed for turbulent flows with a Reynolds number of 8000 using triangle-shaped pipe
geometry with 9234 elements of order N = 7 (n = 3M gridpoints total). Wall boundary in spanwise and
periodic boundary in stream directions are considered with turbulent initial condition. Timings are measured
from 100 timestep runs.

Table 8: NekRS baseline of performance measure on a single GPU, Intel Gen9
(Aurora development system) vs. Nvidia V100. Turbulent pipe simulations with
Re = 8000 for 100 timestep runs with E = 9234, N = 7,n = EN® = 3,167, 262.

systems API backend 100 steps time per step | ratio
Intel Gen9 (Iris@QJLSE/ANL) OpenCL 1.78498e+03 (sec) 17.84 (sec) 1
Nvidia V100 (Nurburg@ANL) OpenCL 3.88553e+01 (sec) 0.388 (sec) 45.93
Nvidia V100 (Nurburg@ANL) CUDA 3.75509e+01 (sec) | 0.375 (sec) | 47.53
Nvidia V100 (Summit@OLCF) CUDA 3.83653e+01 (sec) | 0.386 (sec) | 46.53

Additionally, the CEED team member Thilina Rathnayake (UTUC Ph.D. student) is currently an intern
at Intel working on ports of Nekbone (the CEED BP5 bake-off problem) to Intel iGPU Gen9, which is a
proxy for Aurora development work.

We recall that BP5 is Jacobi-preconditioned conjugate gradient iteration applied to a spectral-element-
(SE-) based Poisson problem on a tensor-product array of hexahedral elements. Full geometric factors are
included so that the problem mimics a complex domain with deformed elements. For BP5, the quadrature
points are the same as the Gauss-Lobatto-Legendre (GLL) nodal points, so no interpolation is required
to evaluate the SE-based matrix-vector product, Au. Neglecting communication for the assembly, the
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leading-order flop count for a pth-order expansion in 3D is 12(p + 1)* + 18(p + 1)? operations per element
and the number of memory references is 7(p + 1)3 per element.

Thilina has ported BP5 to OpenMP and has run this on Nvidia V100s and Intel iGPUs. He has also
developed an OpenCL variant that has been tested on Intel iGPU Gen9. Current plans are to optimize on
the Gen9 and then on the Aurora simulator. Performance tuning has addressed both BK5 (just the local
matrix-vector product with no communication for assembly) and g¢slib, which is the portable gather-scatter
library native to the Nek code suite. Current plans are to develop an OCCA port once the OpenCL port is
complete.

7. OTHER PROJECT ACTIVITIES

7.1 Advanced Simulation Workshop at ANL

Members of CEED and ECP attended the Advanced Simulation Workshop 2020 http://www.asw2020.org,
a workshop organized by Misun Min at Argonne to bring together researchers from a variety of application
areas to review and discuss current trends in scientific simulation. Topics included HPC, biological fluid
mechanics, geodynamos, oil spill modeling in the ocean, combustion, nuclear reactor modeling, trends in
GPU architectures, fundamentals of turbulence, and reduced order modeling. CEED/ECP attendees included
Tzanio Kolev, Tim Warburton, Ananias Tomboulides, Paul Fischer, Misun Min, Elia Merzari, Aleks Obabko
and Andrew Siegel. Posters were presented by CEED-supported Ph.D. students Pedro Bello-Maldonado,
Malachi Phillips, and Nicholas Christensen, all from UIUC.

7.2 Initial NekRS Release

NekRS (https://github.com/Nek5000/nekRS) is a newly developed C++ version of Nek5000, built on top
of libParanumal to support highly optimized kernels on GPUs using OCCA (https://libocca.org). NekRS
has been released on GitHub since August, 2019, and a very first official release, NekRS v20.0, is announced
on March 31, 2020. NekRS has been used for large scale simulations. A version of 2019 was ported to Aurora
development system to get baseline performance on Intel Gen9, compared to Nvidia V100 — these results as
well as an initial baseline performance on Summit using 17 x 17 rod geometries are demonstrated in Section
2.3. Recently NekRS has been focusing on simulations on ExaSMR, problems with pebble beds and 17 x 17
rod geometries as demonstrated in Section 5.1 (using a repo version in March 2020).

7.3 gslib v1.0.6 Release

A new version of gslib https://github.com/Nek5000/gslib was released as v1.0.6. Major features and
improvements in this new release include addition of multisession findpts, backwards-compatible changes,
and some bug fixes.

7.4 Outreach

CEED researchers were involved in a number of outreach activities, including a successful breakout session
on high-order methods and application at the ECP second annual meeting in Houston, organizing a minisym-
posium on numerical PDEs at the AMS JMM20 meeting, participation in the JOWOG34 meeting, the El
Capitan COE kickoff at LLNL, the ECP industry deep dive workshop and a ECP-UK telecon, as well as 6
papers, 2 presentations and 1 poster. The ECP podcast interview about CEED titled “Helping Applications
Leverage Future Computing Architectures with First-Rate Discretization Libraries” was posted on the ECP
website.

8. CONCLUSION

In this milestone, we developed architecture optimizations and tuning of performant discretization libraries
and standards for finite element operators targeting heterogeneous systems. The focus was on delivering
optimal data locality and motion, enhanced scalability and parallelism, derived through a number of CEED
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backends and software packages. We also delivered performance tuned CEED first and second-wave ECP
applications.

In addition, the CEED team also worked to: add and improve support for additional hardware and
programming models in the CEED software components; release the next version of the CEED software stack,
CEED-3.0; and demonstrate performance of libParanumal kernels in libCEED, Nek and MFEM.

The artifacts delivered include a number of software releases: CEED-3.0, libCEED-0.6, MFEM-4.1,
NekRS-20.0, hipMAGMA-1.0, Laghos-3.0, Remhos-1.0 and GSLIB-1.0.6; performance improvements in
applications, tuned CEED software for various architectures through a number of backends, freely available
in the CEED’s repository on GitHub. See the CEED website, http://ceed.exascaleproject.org and the
CEED GitHub organization, http://github.com/ceed for more details.
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